Towards A Computational Prediction of Nanoparticle Pharmacokinetics and Distribution
نویسندگان
چکیده
A number of nanotechnology-enabled drug delivery platforms are in varying stages of drug development. While, physiologically-based pharmacokinetic (PBPK) modelling has become a well-established tool for conventional medicines from preclinical to post-licensing environments, its application for nanomedicines is in its infancy. Part of the reason for this is that the fundamental mechanisms that underpin drug-handling within the body are not as well understood for nanoparticles. A number of recent initiatives aim to further develop PBPK modelling for nanomedicine applications but more fundamental knowledge of the relevant anatomical, physiological and pharmacological processes influencing distribution is required for robust computational prediction. Received: January 07, 2016; Accepted: February 24, 2016; Published: February 29, 2016
منابع مشابه
Preparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملPreparation, properties and preclinical pharmacokinetics of low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle
Low molecular weight heparin-modified isoliquiritigenin-loaded solid lipid nanoparticle (LMWH-ISL-SLN) was developed for injective application. The morphological observation, particle diameter and zeta potential of LMWH-ISL-SLN were characterized using transmission electron microscopy (TEM) and a Malvern Zetasizer. Its entrapment efficiency (EE) and drug loading (DL) were determined by ultracen...
متن کاملComputational simulations of nanoparticle transport in a three-dimensional capillary network
Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...
متن کاملExperimental study and application of computational fluid dynamics on the prediction of air velocity and temperature in a ventilated chamber
The shape of the air flow in the interior is heavily influenced by the air distribution system and the way air enters and exits. By numerically simulating flow by computational fluid dynamics, one can determine the flow pattern and temperature distribution and, with the help of the results, provide an optimal design of the air conditioning system. In this study, a chamber was first constructed ...
متن کاملTowards a rational design of solid drug nanoparticles with optimised pharmacological properties
Solid drug nanoparticles (SDNs) are a nanotechnology with favourable characteristics to enhance drug delivery and improve the treatment of several diseases, showing benefit for improved oral bioavailability and injectable long-acting medicines. The physicochemical properties and composition of nanoformulations can influence the absorption, distribution, and elimination of nanoparticles; consequ...
متن کامل